Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(7): 107164, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485358

RESUMO

How cells orchestrate their cellular functions remains a crucial question to unravel how they organize in different patterns. We present a framework based on artificial intelligence to advance the understanding of how cell functions are coordinated spatially and temporally in biological systems. It consists of a hybrid physics-based model that integrates both mechanical interactions and cell functions with a data-driven model that regulates the cellular decision-making process through a deep learning algorithm trained on image data metrics. To illustrate our approach, we used data from 3D cultures of murine pancreatic ductal adenocarcinoma cells (PDAC) grown in Matrigel as tumor organoids. Our approach allowed us to find the underlying principles through which cells activate different cell processes to self-organize in different patterns according to the specific microenvironmental conditions. The framework proposed here expands the tools for simulating biological systems at the cellular level, providing a novel perspective to unravel morphogenetic patterns.

2.
Eng Comput ; 38(5): 4135-4149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36397878

RESUMO

The correct function of many organs depends on proper lumen morphogenesis, which requires the orchestration of both biological and mechanical aspects. However, how these factors coordinate is not yet fully understood. Here, we focus on the development of a mechanistic model for computationally simulating lumen morphogenesis. In particular, we consider the hydrostatic pressure generated by the cells' fluid secretion as the driving force and the density of the extracellular matrix as regulators of the process. For this purpose, we develop a 3D agent-based-model for lumen morphogenesis that includes cells' fluid secretion and the density of the extracellular matrix. Moreover, this computer-based model considers the variation in the biological behavior of cells in response to the mechanical forces that they sense. Then, we study the formation of the lumen under different-mechanical scenarios and conclude that an increase in the matrix density reduces the lumen volume and hinders lumen morphogenesis. Finally, we show that the model successfully predicts normal lumen morphogenesis when the matrix density is physiological and aberrant multilumen formation when the matrix density is excessive. Supplementary Information: The online version contains supplementary material available at 10.1007/s00366-022-01654-1.

3.
J Biomech Eng ; 144(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864878

RESUMO

Metastasis, a hallmark of cancer development, is also the leading reason for most cancer-related deaths. Furthermore, cancer cells are highly adaptable to micro-environments and can migrate along pre-existing channel-like tracks of anatomical structures. However, more representative three-dimensional models are required to reproduce the heterogeneity of metastatic cell migration in vivo to further understand the metastasis mechanism and develop novel therapeutic strategies against it. Here, we designed and fabricated different microfluidic-based devices that recreate confined migration and diverse environments with asymmetric hydraulic resistances. Our results show different migratory potential between metastatic and nonmetastatic cancer cells in confined environments. Moreover, although nonmetastatic cells have not been tested against barotaxis due to their low migration capacity, metastatic cells present an enhanced preference to migrate through the lowest resistance path, being sensitive to barotaxis. This device, approaching the study of metastasis capability based on confined cell migration and barotactic cell decisions, may pave the way for the implementation of such technology to determine and screen the metastatic potential of certain cancer cells.


Assuntos
Dispositivos Lab-On-A-Chip , Neoplasias , Linhagem Celular Tumoral , Movimento Celular , Humanos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...